The Joe and Rika Mansueto Library HVAC Design Calculations 2012 ASHRAE Student Design Competition

The University of Texas at Arlington

701 South Nedderman Drive, Arlington, TX 76010

Ben Engstrom

Mechanical Engineering Senior Graduate, May 2012 817-713-4723 benjamin.engstrom@mavs.uta.edu

Jahed Ahmed Mechanical Engineering Senior Graduate, May 2012 817-808-8120 jahed.ahmed@mavs.uta.edu

Faculty Advisor Nick Schroeder Facilities Engineer, UTA 701 South Nedderman Drive Arlington, TX 76010 817-272-9075 n.schroeder@uta.edu Omar Ismael Rosales Mechanical Engineering Senior Graduate, May 2012 972-464-9577 omar.rosales@mavs.uta.edu

Paul Hudlow Mechanical Engineering Senior Graduate, May 2012 972-891-9001 paul.hudlow@mavs.uta.edu

Contents

1	Executive Summary	2
2	Design Considerations 2.1 Environmental Conditions 2.2 Building Design	3 3 3
3	Load Calculations 3.1 Building Envelope 3.2 Building Layout 3.3 Zoning	6 6 7 8
4	HVAC System Design 4.1 Waterside 4.2 Airside	10 10 11
5	ASHRAE Standards and Guidelines	12
6	Summary and Conclusions	14
\mathbf{A}	System Checksums	15
в	Duct Layouts	20
\mathbf{C}	Equipment Schedules	23

Executive Summary

Our responsibility for this project was to analyze the Joe and Rika Mansueto Library at the University of Chicago and gather all pertinent information regarding its environment. Once all necessary information was gathered, we were to determine the load calculations necessary to maintain the requirements of the library. These data were placed into Trane's Trace 700^{TM} software in order to estimate loading specifications. Knowing the requirements, we were tasked to design an HVAC system which would effectively fulfill the requirements in an energy- efficient and cost-efficient manner.

This document is a report on all of the information that we have gathered – including all research regarding the building itself, the conditions of the surrounding air, possible systems to implement, and our selection and implementation of our designed system.

Design Considerations

This project is unique from many others because of its genuine practicality. Amid all of the 'true engineering' tasks like stress testing or element analysis, it is easy to get caught up in the billboard projects: vehicle design, missile design. These types of jobs tend to grab the spotlight for many in the field. Indeed, they are very important in their own right! There is much to be excited about when you consider these applications. But, it is not over-stepping things to say that such ventures are 'specialty projects' – that is, they are for specific contexts and not universal. This is where our project shows its value.

Sometimes without even noticing it, a large percentage of the world lives life relatively unaware of air. Until there is a problem with it, that is. Once an issue arises with temperature or quality, then we move quickly to make a change. Nevertheless, for the most part, we tend to take for granted that if it is cold outside, we will be warm once we enter a building. This is a logical thought-process. But there is a reason behind that warmth. And therein is our task.

The purpose of our project is to design an HVAC system for a building. The two main goals are thermal comfort and acceptable air quality. Since our project is based on a competition, our first major task was to establish project requirements as laid out by ASHRAE. Most of these were gathered from the ASHRAE website. However, when it came to specific environment assumptions, we had a few choices to make.

2.1 Environmental Conditions

As stated before, the library is located at the University of Chicago in downtown Chicago. Trace 700^{TM} has compiled weather data for multiple regions within the United States. Unfortunately, it does not have one for our specific location. Therefore, we assumed a location of Chicago's Midway Airport, which is located approximately 9 miles west of the library. We find this to be a suitable assumption because both of the locations lie along the same longitudinal line – meaning that their weather patterns stay fairly constant within that short distance.

2.2 Building Design

The Joe and Rika Mansueto Library (Figure 2.2) is a breathtaking example of architectural provess and technological advancement. Constructed in May 2011, it serves as a prime model of modernization in educational buildings.

Figure 2.1: Map showing the relative location of the library site and weather gathering station.

Figure 2.2: Photograph of the glass dome covering the Joe and Rika Mansueto Library.

This dome's surface is made completely out of glass and is fully transparent, allowing for uninhibited visibility between the inside and outside of the library. The glass that is used for the dome is a high-performance class, specifically effective in combining solar heat rejection with ambient light admittance. This provides an incredible amount of tinted light into the library while keeping firm control of the heat that is being permitted, allowing for a very comfortable workspace for those inside. Still, it poses an interesting challenge of maintaining that environment.

The glass dome covering the ground floor of the library is the most significant single load on the HVAC system. The dome is approximately 240 feet long, 120 feet wide and 35 feet tall. The glass higher than 18 feet above the ground is fritted while all lower glass is clear. Since exact drawings were not available it was assumed that the dome is an ellipsoid with a constant curvature in the lateral direction. The total area was calculated using this assumption.

In general, the library has three major subsections with environment requirements to maintain. Each subsection of the library will be covered in detail in this report. At this point, however, we will simply state the three prominent sections and their desired environment conditions:

Figure 2.3: Rendered representations of the library.

- The Grand Reading Room The performance target to be maintained in the ground floor Reading Room is 75 °F and 50% relative humidity (55 °F dew point) in the summer and 72 °F and 30% relative humidity (38.9 °F dew point) in the winter.
- Archival Storage / Automated Storage and Retrieval System The specifications of this area, as laid out by the client, are 68 °F (±2 °F) and 30% relative humidity (29 °F dew point) and a space condition of 80 °F and 60% relative humidity.
- Conservation Laboratories The performance target of this area must be maintained at 75 °F and 45% relative humidity (52.2 °F dew point) in the summer and 72 °F and 45% relative humidity (49.6 °F dew point) in the winter.

These are the three major systems that have been our focal point. Each of them has their own specific needs, and all of these specifications are absolutely crucial for the entire library to function effectively.

Another set of information that we needed to consider was specific requests from the library's owner. Early on in the project, the client requested that heat pumps be used to generate the hot and chilled water; another request of the client was that we employ Variable- Air-Volume (VAV) boxes wherever possible; these boxes help to control and vary flow for specific zones. These requests were considered, and we have explored cost-effective HVAC systems and designs that would provide thermal comfort, indoor air quality, and energy conservation.

Chapter 3 Load Calculations

By a large margin, the pivotal point of this project revolved around obtaining acceptable load estimations. As stated before, we incorporated the program Trane Trace 700^{TM} in order to fabricate our load requirements. This entailed a large amount of research into specific loadings given within the building. People, lights, miscellaneous electronics, ventilations, and of course the roof were all given respective estimations. These numbers were then placed into our Trace 700^{TM} model for analysis.

3.1 Building Envelope

The unique shape of the library represented one of the greatest difficulties to work through. Since an ellipsoid is not a valid shape for input into TRACE^{TM} 700, an approximate model was created with a sweep between three octagons as shown in Figure 3.1.

Figure 3.1: Mathematic representation to approximate the heat transfer of the dome.

This model was designed to have essentially the same total length, width, height, and surface area as the ellipsoid model. The middle octagon was placed at a height of 18 feet to distinguish between the fritted and clear glass areas.

Procurement of an acceptable model for the building envelope was absolutely essential for

our loading cases. As can be expected (and will graphically be shown later), the library roof proved to be our largest load case to take into account. Therefore, it was vital to have a good estimation of its load potential.

3.2 Building Layout

Earlier we mentioned each specific area and it specifications. Now we will discuss how we went about inputting loading data for each portion.

- The Grand Reading Room The 8,000-square-foot room must provide comfortable seating for faculty, students and visiting scholars. It will be constantly filled with people, giving off latent heat to the environment. Additionally, many of those in the room will be toting laptops and other electronic devices, which account for sensible heat moving into the room—not to mention the Circulation Service Center, which will also house computers. We have taken these various heat sources into account in our analysis. Also, the amount of people in the room necessitates constant cycling of the air in the room for filtration purposes. Furthermore, as far as people numbers, we assumed there to be maximum occupancy at all times. This number was given in the project requirements as 180 persons in the Reading Room. Maintaining this environment is crucial because it is a place of study. It would be a sad ordeal if individuals could not study effectively because they are made uncomfortable by the atmosphere. Indeed, that is why the specifications are so tight. They are standards for a system which maintains a healthy and comfortable environment, so those in the room can achieve optimal focus.
- Conservation Labs The Library houses a state-of-the-art conservation and digital technology laboratory that will be used to preserve manuscripts and other rare materials in their original form or through digitization. One lab contains a 700-cfm fume hood. Accordingly, we modeled that hood as an extra ventilation consideration. These labs must be strictly maintained so as to provide a suitable environment for the work of conserving documents. This process can be incredibly sensitive; as a result, much time and effort will be spent on coming up with an HVAC system which will not only be suitable, but will actually serve to advance and enhance the work in the labs.
- Archive Storage / Automated Storage and Retrieval System (ASRS) Because this area acts as storage for the books, it also necessitates a strict maintenance of the surrounding air. Although the amount of latent heat will be much less substantial than that of the Grand Reading Room, there are other factors to consider. We needed to calculate moisture loads from a variety of sources, such as ventilation, people, and door openings. Furthermore, we necessarily took into account any heat that is generated by the machines and cranes that are used to retrieve the books. The mechanical arms which maintain this operation are each fitted with a 10-horsepower motor. This we modeled as an internal load within the basement. The overarching goal is to minimize natural aging of books, mechanical damage, mold risk, and metal corrosion. In every aspect of this analysis, therefore, we made these points of major emphasis. We want to maximize the amount of time that these books can be on the shelf.

3.3 Zoning

Trace allows the user to set zones for heating and cooling maintenance purposes. This aids specifically in our case because it allows us to separate areas with unique performance specifications – easing the process of determining necessary equipment loads as well.

For our design, we chose the basement as its own zone. Because its requirements for humidity and temperature control were much more stringent than those of the ground floor, we wanted a high rate of manipulability within this area.

On the ground floor, we decided to split the region into five zones, as shown in Figure 3.2.

Figure 3.2: Layout of the zones chosen for the HVAC system design.

Again, dividing into zones gives more freedom to control specific regions – since there are differing environments within the building. As can be seen in the figure, the Reading Room (including the Circulation Desk) is its own zone (1). Also, the Offices have their own designated space (3), along with the Laboratories (4), and the Preservation Area (2).

Figure 3.3: Graph of the loads on each zone.

In our analysis, we assumed that Zones 1 and 2 carried the roof load, while Zones 3 and 4 were assumed to be thermally insulated – meaning no roof load would be applied. Using the TRACETM modeling software, we were then able to define the theoretical peak loads which our proposed HVAC system would be called on to maintain. These loads are shown in Figure 3.3.

By looking at this graph, it is obvious just how much the roof load affects the overall building load. The significant cooling load is directly resulting from the heat obtained through the roof's solar gain. Not only that, but the significant load for heating within those same zones makes sense as well. During colder months, heat is lost by conduction through the roof – meaning that the system would have to work harder in those zones to maintain the required specifications.

In fullness, Zones 3 and 4 should carry a very small load because of their size and relative insulation. Zones 1 and 2, both holding a share of the roof load, should be significantly higher than all of the other sections. And Zone 5 – being the basement – should carry a good load because of its size, yet still be reasonable.

To emphasize the overall significance of that roof load, we compiled a graph which compared its numbers to all of the other factors which we considered.

Figure 3.4: Graph of the loads created by various factors.

Figure 3.4 does a perfect job of clarifying just how much the overall load is affected by the roof. All told, the roof comprised roughly 75% of the total necessary load requirements. Truly, the library sacrifices a lot of utility efficiency for the sake of aesthetics.

HVAC System Design

4.1 Waterside

After justifying the choice of a ground-source heat pump, it was then our responsibility to design a viable water-side piping diagram. This layout is meant to show how water is sent through the ground-loop and coils of the heat pump. Our design is shown in Figure 4.1.

Figure 4.1: Schematic of the waterside system.

As can be seen in the graph, our loads require nine separate heat pumps along one loop. The size of the pumps is dependent on the required load in each zone. Once we discerned the loads in each of the zones, we were then able to make selections regarding equipment to employ in each zone. Based on the loads, we determined that Zone 1 would necessitate four heat pumps; Zone 2, a little smaller, requires three heat pumps. Zones 3 and 4 actually have small enough loads that they can be combined into one smaller heat pump. Finally, Zone 5 will require its own heat pump as well.

4.2 Airside

Figure 4.2: Schematic of the airside system.

Figure 4.2 shows a schematic of the airside system design. Zones 1-4 share a return air plenum which routes the air back to the supply side after exhausting air and mixing outside air from the heat recovery unit. Zone 5, covering the basement area uses the same heat recovery unit but does not mix the return air with that of other zones. This is because of the very different requirements within the basement area.

ASHRAE Standards and Guidelines

This project requires that the design meet ASHRAE Standards 55, 62.1 and 90.1 along with any local regulations which are applicable to the University of Chicago where the building is located. Thus all of these standards must be considered throughout various stages of system design. The basic purpose and function of each of the three ASHRAE standards are summarized below.

ASHRAE Standard 55 - Thermal Environmental Conditions for Human Occupancy - sets forth the guidelines for designing a system which the inhabitants will find thermally acceptable. The standard outlines the combinations of indoor thermal environmental factors and personal factors that will produce a thermal environmental condition that is acceptable by a majority of occupants. The standard includes consideration of the outdoor environment, the people inside the conditioned space and how the space is used. It identifies six factors that must be defined when establishing conditions for thermal comfort which are metabolic rate, clothing insulation, air temperature, radiant temperature, air speed and humidity. Section 5.2 goes through the method for determining acceptable thermal conditions in occupied spaces. To comply with the standard, a system must keep the temperature of the conditioned space within the comfort zone defined by the methods outlined in the standard.

ASHRAE Standard 62.1 - Ventilation for Acceptable Indoor Air Quality - specifies minimum ventilation rates and indoor air quality that will be acceptable to the inhabitants and minimize potential adverse health effects. Ventilation will be designed for air balancing where each space is provided with its required minimum ventilation airflow. Relative humidity will be designed either at the peak outdoor dew-point design conditions and at the peak indoor design latent load or at the lowest space sensible heat ratio expected to occur and the concurrent outdoor condition.

Under Standard 62.1, air is categorized into four different classes. Since the building is a library and does not contain restrooms we will only encounter Class 1 and Class 2 airs. Class 1 air is defined as air with low contaminant concentration, low sensory irritation intensity and inoffensive odor. Class 2 air is defined as air with moderate contaminant concentration, mild sensory irritation and mildly offensive odor. Class 1 air can be recirculated to any space. Class 2 air can be recirculated within itself or within classes 3 and 4 but may not be recirculated into class 1 air.

Two types of procedures exist when it comes to design of a ventilation system, Ventilation Rate Procedure (VRP) and Indoor Air Quality Procedure (IAQ). In VRP, outdoor air intake rates are determined based on space type/application, occupancy level and floor area. In IAQ, the outdoor air intake rates and other system design parameters are based on analysis of containment sources and containment concentration targets. IAQ is also used when the design is intended to attain specific target contaminant concentrations or levels of acceptability of perceived indoor air quality. Both IAQ and VRP yield good results for any context; however IAQ is dependent on case studies which we cannot have since we do not have the building close. Therefore, for our purposes, we will be using the VRP because results from VRP can be attained using tabulated data.

Zone parameters are determined by applying zone parameters in Sections 6.2.2.1 through 6.2.2.3 of ASHRAE Standard 62.1-2004. Systems should be capable of providing the required ventilation rates in breathing zone whenever the zone is occupied. Air ducts should be designed to provide easy accessibility for repair and maintenance. Our final Standard that we had to abide by was ASHRAE 90.1. The local regulations of the City of Chicago calls for all HVAC work to be within the regulations of this code. ASHRAE 90.1 is a compilation of tables and charts which contain standardized values for variables that one encounters while constructing a low-rise building. We used these standards largely for sanity checks and referencing.

Lastly, ASHRAE has an entire array of handbooks that they send out systematically with huge amounts of information on different components that can be applied in scenarios, as well as conventional HVAC methods for specific building types – including one chapter on libraries. This chapter we have used extensively for reference regarding different air classes to keep in mind, what kinds of contaminants to be aware of, as well as information on suitable systems to apply for our future analysis.

Summary and Conclusions

The goal of this year-long project was to design an HVAC system for the Joe and Rika Mansueto Library which would satisfy ASHRAE Standards 55, 62.1 and 90.1 for thermal comfort, indoor air quality, and energy efficiency, respectively. The task involves proper modeling and calculation of building loads according to ASHRAE's guidelines as well as design and sizing of appropriate equipment to meet all imposed requirements.

Significant study of the relevant standards has been made to help direct the design process and resulting solutions. Sections of all three standards provided for compliance that pertain to the library have been carefully read and compiled for reference throughout the entire project. Local conditions and codes have also been examined so that all requirements for the design may be fully understood and adequately met.

Various equipment and system components have been researched so that informed decisions were made throughout the process. A generic system was initially selected as a baseline model for calculation. Following that analysis, we ran three alternatives against the same loads in order to make a justified selection of a ground-source heat pump.

For the glass dome, which dominated the above-ground loads, an appropriate model was created and implemented with TRACE^{TM} 700 to allow for accurate calculations of the open area of the ground floor. The rest of the building was also broken down and described within TRACE^{TM} 700 to allow for accurate load calculation throughout the building.

The final system design utilized 9 different water source heat pumps to heat and cool the 5 building zones with a ground loop acting as a heat source and sink. A single water pump was used to serve the entire system and adaquately move the water through the ground loop. A heat recovery unit was also design into the system in order to reduce overall ventilation expenses.

Appendix A

System Checksums

Zone Checksums

By UNIVERSITY OF TEXAS AT

	COOLING C	OIL PEAK			CLG SPACE	PEAK			HEATIN	G COI	L PEAK		TEM	IPERATURE	S	
Peak (ed at Time: Dutside Air:	Mo/Hr: 7 / 14 OADB/WB/HR: 90 / 73 / 99		Mo/Hr: OADB:	Mo/Hr: 6 / 14 OADB: 85			Mo/ OAE	Hr: Hea)B: 0	iting Design		SADB	Cooling 54.6	Heatin 72		
	Space Sens. + Lat.	Plenum Sens. + Lat	Net Total	Percent Of Total	Space Sensible	Percent Of Total			Space Pe Space Se	ak ns	Coil Peak Tot Sens	Percent Of Total	Ra Plenum Return Ret/OA	75.8 75.7 76.4	66 62	
	Btu/h	Btu/h	Btu/h	(%)	Btu/h	(%)			Bti	ı/h	Btu/h	(%)	Fn MtrTD	0.0	0	
Envelope Loads							Envelope L	oads					Fn BldTD	0.0	0	
Skylite Solar	822,382	0	822,382	77	822,382	89	Skylite S	olar		0	0	0.00	Fn Frict	0.0	0	
Skylite Cond	0	35,706	35,706	3	0	0	Skylite C	ond		0	-274,436	65.15				
Roof Cond	0	0	0	0 :	0	0	: Roof Cor	nd	0		0	0.00				
Glass Solar	0	0	0	0 :	0	0	Glass Sc	lar		0 0		0.00	4	AIRFLOWS	ows	
Glass/Door Cond	0	0	0	0	0	0	Glass/Do	or Cond		0	0	0.00		Cooling	Heati	
Wall Cond	0	0	0	0	0	0	Wall Cor	d		0	0	0.00	Diffuser	41.522	41.5	
Partition/Door	0		0	0.	0	0	Partition/	Door		0	0	0.00	Terminel	41 522	116	
FIOOF	0	0	0	0.	0	0	FIOOF	F 1		0	U	0.00	Main Fan	41,522	41,0	
Adjacent Floor	0	0	0	0	0	0	Adjacent	FIOOF		0	U	0.00	0	11,022		
Innitration	0		0	0	0	0	infiltratio	1		0	074 400	0.00	Sec Fan	0		
Sub Total ==>	822,382	35,706	858,088	80 .	822,382	89	SUD TOTE	/ ==>		0	-274,430	05.15	Nom Vent	2,044	2,0	
				:			Internal Le	ade					AHU Vent	2,044	2,0	
Internal Loads				:				105					Infil	0)	
Lights	39,543	0	39,543	4	39,543	4	Lights			0	0	0.00	MinStop/Rh	0)	
People	76,050	0	76,050	7 :	46,350	5	People			0	0	0.00	Return	41,522	41,5	
Misc	15,205	0	15,205	1 :	15,205	2	: Misc			0	0	0.00	Exhaust	2,044	2,0	
Sub Total ==>	130,798	0	130,798	12	101,098	11	Sub Tota	/ ==>		0	0	0.00	Rm Exh	0)	
													Auxiliary	0)	
Ceiling Load	0	0	0	0	0	0	Ceiling Loa	d		-2	0	0.00	Leakage Dwn	ı 0)	
Ventilation Load	0	0	77,322	7 :	0	0	Ventilation	Load		0	-160,286	38.05	Leakage Ups	0)	
Adj Air Trans Heat	0		0	0	0	0	: Adj Air Tra	ns Heat		0	0	0				
Dehumid. Ov Sizin	3		0	0			Ov/Undr Si	zing		0	0	0.00				
Ov/Undr Sizing	0		0	0	0	0	Exhaust He	at			13,507	-3.21	ENGI	NEERING C	KS	
Exhaust Heat		0	0	0			OA Prehea	Diff.			0	0.00				
Sup. Fan Heat			0	0 :			RA Preheat	Diff.			0	0.00		Cooling	Heatin	
Ret. Fan Heat		0	0	0:			Additional	Reheat			0	0.00	% OA	4.9	4	
Duct Heat Pkup		0	0	0			System Ple	num Heat			0	0.00	cfm/ft ²	4.30	4.3	
Underflr Sup Ht Pk	up		0	0			Underflr Su	ıp Ht Pkup			0	0.00	cfm/ton	467.32		
Supply Air Leakage	•	0	0	0 :			Supply Air	Leakage			0	0.00	ft²/ton	108.68		
				:			:						Btu/hr·ft ²	110.42	-42.4	
Grand Total ==>	953,180	35,706	1,066,208	100.00	923,480	100.00	Grand Tota	/ ==>		-2	-421,214	100.00	No. People	189		
		COOLING	COIL SEL	ECTION					ARE	AS		H	EATING COII	L SELECTIO	N	
	Total Capacity	Sens Cap.	Coil Airflow	Enter I	DB/WB/HR	Leave	DB/WB/HR		Gross Total	G	lass		Capacity	Coil Airflow	Ent	
	ton MBh	MBh	cfm	°F	°F gr/lb	°F	°F gr/lb			f	t² (%)		MBh	cfm	°F	
Main Clg 8	8.9 1.066.2	994.8	41,522	76.5 58	3.2 45.1	54.6 4	8.5 42.3	Floor	9,656			Main Hto	-409.8	41.522	62.9	
Aux Cla	0.0 0.0	0.0	0	0.0 (0.0 0.0	0.0	0.0 0.0	Part	0			Aux Htg	0.0	0	0.0	
Ont Vent	0.0	0.0	0	0.0 0	0.0	0.0	0.0 0.0	Int Door	0			Prohoat	0.0	0	0.0	
opt vent	0.0 0.0	0.0	0	0.0 (0.0	0.0	0.0 0.0	EvElr	0			rieneat	0.0	0	0.0	
Total 9	89 1066 2							Roof	16 190	16 100	100	Humidif	0.0	0	0.0	
10101 0	0.0 1,000.2							Wall	10,130	10,190		Ont Vent	0.0	0	0.0	
								E a D				Tetel	100.0	0	5.0	
								Ext Door	r 0	(0 0	Iotal	-409.8			

Project Name: Dataset Name:

Dataset Name: Library-42612.trc

TRACE® 700 v6.2.6.5 calculated at 01:00 PM on 04/26/2012 Alternative - 1 System Checksums Report Page 1 of 51

	COOLING C	CLG SPACE	E PEAK			HEATING COIL PEAK				TEMPERATURES						
Peak	ed at Time:	M	lo/Hr: 8 / 12	:	Mo/Hr:	3 / 12	:		Mo/H	Ir: Heatin	g Design			Cooling	Hea	ting
	Jutside Air:	OADB/WE	B/HR: 85/70/8	57	OADB:	44			OAD	B: 0			SADB	54.9		72.0
	•				0	B	:		0		0 - " D I		Ra Pienum	/5.8		00.9
	Sone + Lat	Sone + Lat	Tetel	Of Tatal	Space	Of Tatal			Space Pea	46	Tet Cone	Of Tatal	Return Ret/OA	75.0		66.2
	Jens. + Lat.	Jens. + Lat	Iotai	Of Total	Sensible	OFIOTAL			Space Ser	15	Tot Sens	OFIOTAL	Fr MtrTD	10.9		00.2
Envolone Loade	Blu/II	Blu/II	Blu/II	(%)	Blu/II	(%)	Envelope I	oada	Blu	/11	Dlu/I	1 (%)	En BidTD	0.0		0.0
Skylite Solar	717 788	0	717 788	89	739 819	95	Skylite S	olar		0	0	0.00	En Frict	0.0		0.0
Skylite Cond		31 458	31 458	4	100,010	0	Skylite C	ond		ő	-197 378	88.67		0.0		0.0
Roof Cond	ő	01,100	01,100	0	0	Ő	Roof Cor	nd		õ	101,010	0.00				
Glass Solar	Ō	Ō	ō	0	Ō	ō	Glass Sc	blar		ō	C	0.00	A 1	IRFLOWS		
Glass/Door Cond	0	0	0	0	0	0	Glass/Do	oor Cond		0	C	0.00		0		
Wall Cond	0	0	0	0	0	0	Wall Cor	nd		0	C	0.00		Cooling	н	ating
Partition/Door	0		0	0	0	0	: Partition/	/Door		0	C	0.00	Diffuser	35,392	3	5,392
Floor	0		0	0	0	0	Floor			0	C	0.00	Terminal	35,392	3	5,392
Adjacent Floor	0	0	0	0	0	0	Adjacent	t Floor		0	C	0.00	Main Fan	35,392	3	5,392
Infiltration	0		0	0	0	0	Infiltratio	n		0	C	0.00	Sec Fan	0		0
Sub Total ==>	717,788	31,458	749,246	93	739,819	95	: Sub Tota	a/ ==>		0	-197,378	88.67	Nom Vent	346		346
							:						AHU Vent	346		346
Internal Loads							Internal Lo	ads					Infil	0		0
Lights	14.077	0	14.077	2	14.077	2	Lights			0	C	0.00	MinStop/Rh	0		0
People	12,600	ō	12,600	2	7,000	1	People			ō	C	0.00	Return	35,392	3	5,392
Misc	14,744	0	14,744	2	14,744	2	Misc			0	C	0.00	Exhaust	346		346
Sub Total ==>	41 421	0	41 421	5	35 821	5	Sub Tota	a/ ==>		0	0	0.00	Rm Exh	0		0
Cub / Clu	,			Ű	00,021		: 000 /010			•		0.00	Auxiliary	0		0
Ceiling Load	0	0	0	0	-1	0	Ceiling Loa	ad		-2	C	0.00	Leakage Dwn	0		0
Ventilation Load	0	0	14.615	2	0	ō	Ventilation	Load		0	-27,155	12.20	Leakage Ups	0		0
Adj Air Trans Heat	0		0	0	0	0	Adj Air Tra	ns Heat		0	C	0				
Dehumid. Ov Sizin	a		0	0			Ov/Undr Si	zina		0	C	0.00				
Ov/Undr Sizing	0		0	0	0	0	Exhaust He	at			1,931	-0.87	ENGI	NEERING C	ĸs	
Exhaust Heat		0	0	0			OA Prehea	t Diff.			C	0.00				
Sup. Fan Heat			0	0			RA Preheat	t Diff.			C	0.00		Cooling	Hea	nting
Ret. Fan Heat		0	0	0			Additional	Reheat			C	0.00	% OA	1.0		1.0
Duct Heat Pkup		0	0	0			System Ple	enum Heat			C	0.00	cfm/ft ²	10.29	1	0.29
Underfir Sup Ht Pk	up		0	0			Underfir Su	up Ht Pkup			C	0.00	cfm/ton	527.39		
Supply Air Leakag	e	0	0	0			: Supply Air	Leakage			C	0.00	ft²/ton	51.23		
							:						Btu/hr·ft ²	234.23	-6	2.98
Grand Total ==>	759,209	31,458	805,282	100.00	775,639	100.00	Grand Tota	a/ ==>		-1	-222,601	100.00	No. People	28		
		COOLIN	G COIL SEL	ECTION					ARE/	s		н		SELECTIO	N	
	Total Canacity	Sans Can	Coil Airflow	Enterl	B/WB/HP	Logve			Gross Total	Glas			Canacity	Coil Airflow	Ent	Lva
	ton MBh	MBh	cfm	°F	°F ar/lb	°F	°F ar/lb		0.000 .010	ft2	(%)		MBh	cfm	°F	°F
Main Clg 6	7.1 805.3	791.1	35,392	75.9 5	9.9 53.3	54.9 5	1.7 53.3	Floor	3,438			Main Hto	-216.5	35.392	66.4	72.0
Aux Clg	0.0 0.0	0.0	0	0.0	0.0 0.0	0.0	0.0 0.0	Part	0			Aux Htg	0.0	0	0.0	0.0
Opt Vent	0.0 0.0	0.0	0	0.0	0.0 0.0	0.0	0.0 0.0	Int Door				Preheat	0.0	0	0.0	0.0
	0.0	5.0	0	0.0		0.0	0.0	ExFir	Ő				5.0	0	0.0	0.0
Total 6	7.1 805.3							Roof	11,479	11,479	100	Humidif	0.0	0	0.0	0.0
								Wall	0	0	0	Opt Vent	0.0	0	0.0	0.0
								Ext Doc	or 0	0	0	Total	-216 5			
L											-		2.0.0			

Zone - 2

Project Name: Dataset Name: Library-42612.trc TRACE® 700 v6.2.6.5 calculated at 01:00 PM on 04/26/2012 Alternative - 1 System Checksums Report Page 2 of 51

16

	COOLING C			CLG SPACE	E PEAK			HEATING (COIL PEAK		TEM	PERATURE	s		
Peak	ed at Time:	N	No/Hr: 7 / 15		Mo/Hr:	7/15	:		Mo/Hr:	Heating Design			Cooling	Hea	iting
	Jutside Air:	UADB/WE	B/HR: 91/73/5	0	UADB:	91			UADB:	0		SADB Ba Blonum	45.4		72.0
	Space	Blonum	Not	Borcont	Space	Dorcont	:		Space Book	Coll Roal	Dorcont	RaPienum	75.0		72.0
	Sens + Lat	Sens + Lat	Total	Of Total	Sonsible	Of Total			Space Feak	Tot Son	Of Total	Ret/OA	83.0		36.1
	Dau/h	Dtu/h	Dtu/b		Sensible				Space Sens	TOL Sens		En MtrTD	0.0		0.0
Envelope Loads	Blum	Blum	Blu/II	(/0)	Blum	(/0)	Envelope I	obeo	Blu/II	Dtu/i	· (%)	En BidTD	0.0		0.0
Skylite Solar	0	0	0	0	0	0	Skylite S	olar	0	(0.00	En Frict	0.0		0.0
Skylite Cond	0	0	0	0	0	0	Skylite C	ond	ō	Ċ	0.00				
Roof Cond	0	0	0	0	0	0	Roof Cor	nd	0	Ċ	0.00				
Glass Solar	0	0	0	0	0	0	Glass Sc	olar	0	(0.00	A	IRFLOWS		
Glass/Door Cond	0	0	0	0	0	0	Glass/Do	oor Cond	0	(0.00		Cooling	н	anting
Wall Cond	0	0	0	0	0	0	: Wall Cor	nd	0	(0.00	Diffuser	Cooling	п	FOO
Partition/Door	0		0	0	0	0	Partition/	'Door	0	(0.00	Dinuser	520		520
Floor	0	_	0	0	0	0	Floor		0	(0.00	Terminal Mein Fen	520		520
Adjacent Floor	0	0	0	0	0	0	Adjacent	Floor	0	(0.00		520		520
Infiltration	0		0	0	0	0	: Infiltratio	n	0	(0.00	Sec Fan	0		0
Sub Total ==>	0	0	0	0	0	0	SUD TOTA	9/ ==>	0	(0.00	Nom Vent	260		260
							Internel Le	ada				AHU Vent	260		260
Internal Loads								aus				Infil	0		0
Lights	7,479	0	7,479	22	7,479	45	Lights		0	(0.00	MinStop/Rh	0		0
People	13,500	0	13,500	40	7,500	45	People		0	(0.00	Return	520		520
Misc	1,816	0	1,816	5	1,816	11	Misc		0	(0.00	Exhaust	260		260
Sub Total ==>	22,794	0	22,794	68	16,794	100	Sub Tota	a/ ==>	0	(0.00	Rm Exh	0		0
												Auxiliary	0		0
Ceiling Load	0	0	0	0	0	0	Ceiling Loa	lood	0	20.25	0.00	Leakage Dwn	0		0
Ventilation Load	0	0	10,693	32	0	0	ventilation	Loau	0	-20,350	0.10	Leakage Ups	0		0
Adj Air Trans Heat	0		0	0	0	0	Adj Air Ira	ns Heat	0	(0				
Dehumid. Ov Sizin	g		0	0			Ov/Undr Si	zing	1	1	0.00				
Ov/Undr Sizing	0	0	0	0	0	0	Exhaust He	eat		2 591	12 75	ENGI	NEERING C	ĸs	
Sun Fan Heat		0	0	0			BA Prohoat	t Diff		-2,103	8.07		Coolina	Hea	ating
Ret Fan Heat		0	0	0			Additional	Reheat		-2,102	0.00	% OA	49.9		49.9
Duct Heat Pkup		0	0	0			System Ple	num Heat		Č	0.00	cfm/ft ²	0.28		0.28
Underfir Sup Ht Pk	aup		0	0			Underfir Su	up Ht Pkup		(0.00	cfm/ton	186.46		
Supply Air Leakag	e	0	0	0			Supply Air	Leakage		(0.00	ft²/ton	654.33		
								J. J. J.				Btu/hr-ft ²	18.34	-1	1.15
Grand Total ==>	22,794	0	33,487	100.00	16,794	100.00	Grand Tota	a/ ==>	1	-26,041	100.00	No. People	30		
		COOLIN	G COIL SEL			_			AREAS		н		SELECTIO	N	
	Total Canacity	Sens Can	Coil Airflow	Enterl	DB/WB/HR	Leave	DB/WB/HR		Gross Total	Glass	""	Canacity	Coil Airflow	Ent	l va
	ton MBh	MBh	cfm	°F	°F ar/lb	°F	°F ar/lb		0.000 .010	ft ² (%)		MBh	cfm	°F	°F
Main Clo	28 335	21.3	520	83.0 6	76 789	45 4 4	51 451	Floor	1 826	,	Main Htg	-20.4	520	36.1	72 0
Aux Cla	0.0 0.0	0.0	0	0.0	0.0 0.0	0.0	0.0 0.0	Part	0		Aux Htg	0.0	0	0.0	0.0
Opt Vent	0.0 0.0	0.0	0	0.0	0.0 0.0	0.0	0.0 0.0	Int Doo	r 0		Preheat	-5.3	520	36.1	45.4
								ExFlr	Ó						
Total	2.8 33.5							Roof	0	0 0	Humidif	0.0	0	0.0	0.0
								Wall	0	0 0	Opt Vent	0.0	0	0.0	0.0
								Ext Doo	or 0	0 0	Total	-20.4			

Zone - 3

Project Name: Dataset Name: Library-42612.trc TRACE® 700 v6.2.6.5 calculated at 01:00 PM on 04/26/2012 Alternative - 1 System Checksums Report Page 3 of 51

	COOLING C			CLG SPACE	E PEAK			HEATING	COIL PEAK		TEMPERATURES				
Peak	ed at Time: Dutside Air:	N OADB/WE	lo/Hr: 7 / 15 B/HR: 91 / 73 / 9	96	Mo/Hr: OADB:	7 / 15 91			Mo/Hr: OADB:	Heating Design 0		SADB	Cooling 47.8	Hea	i ting 72.0
	Space Sens. + Lat.	Plenum Sens. + Lat	n Net Total	Percent Of Total	Space Sensible	Percent Of Total			Space Peak Space Sens	Coil Peak Tot Sens	Percent Of Total	Ra Plenum Return Ret/OA	75.0 75.0 84.0		72.0 72.0 31.7
	Btu/h	Btu/h	Btu/h	(%)	Btu/h	(%)			Btu/h	Btu/h	(%)	Fn MtrTD	0.0		0.0
Envelope Loads							Envelope L	_oads				Fn BldTD	0.0		0.0
Skylite Solar	0	0	0	0	0	0	Skylite S	Solar	0	0	0.00	Fn Frict	0.0		0.0
Skylite Cond	0	0	0	0	0	0	Skylite C	Cond	0	0	0.00			_	
Roof Cond	0	0	0	0	0	0	Roof Co	na	0	0	0.00				
Glass Solal	0	0	0	0	0	0	Glass St	Jiai oor Cond	0	0	0.00		IKFLOWS		
Wall Cond	0	0	0	0	0	0	. Glass/Di	ool Collu	0	0	0.00		Cooling	He	ating
Partition/Door	0	0	0	0	0	0	Partition	/Door	0	0	0.00	Diffuser	593		593
Floor	0		0	0	0	0	Floor	0001	0	0	0.00	Terminal	593		593
Adjacent Floor	Ő	0	ő	0	ő	ő	Adiacen	t Eloor	0	0	0.00	Main Fan	593		593
Infiltration	0	0	ů 0	ő	ő	ő	Infiltratio	n	0	0	0.00	Sec Fan	0		0
Sub Total ==>	0	0	-	0	-	0	Sub Tota	a/ ==>	0	0	0.00	Nom Vont	332		332
ous rola.			Ũ	Ű	Ŭ	Ū						AHII Vont	222		332
Internal Loads							Internal Lo	ads				Infil	0		002
Lighto	4.042	0	4.042	14	4.042	20	Liabto		0	0	0.00	MinSton/Bh	0		0
Booplo	4,943	0	4,943	20	4,943	20	Booplo		0	0	0.00	Return	465		503
Miec	6 860	0	6 860	10	6,860	30	Misc		0	0	0.00	Exhaust	205		332
Out Tatal	0,000	0	0,000	10	47.554	400	. NIIGC	-1	0	0	0.00	Rm Exh	127		002
Sub Total ==>	22,154	0	22,154	61	17,554	100	SUD TOT	a/ ==>	0	0	0.00	Auxilian			ő
Ceiling Load	0	0	0	0	0	0	Ceiling Los	he	0	0	0.00	Leakage Dwn	0		0
Ventilation Load	0	0	14.016	20	0	0	Ventilation	Load	0	-26 041	100.00	Leakage Unc	0		0
Adi Air Trans Heat	0	0	14,010		0	0	Adi Air Tra	ne Heat	0	20,011	00.00	Leakage Ops	0		0
Dohumid Ov Sizin	~		0	0	0	0	Ov/Undr Si	izina	0	0	0.00				
Ov/Undr Sizing	9		0	0	0	0	Exhaust H	aat	0	0	0.00	ENCU		ve	
Exhaust Heat	0	0	0	0	0	0	OA Prehea	t Diff.		0	0.00	ENGI	NEEKING C	no	
Sup. Fan Heat		-	0	0			RA Prehea	t Diff.		0	0.00		Cooling	Hea	iting
Ret. Fan Heat		0	0	0			Additional	Reheat		0	0.00	% OA	56.0		56.0
Duct Heat Pkup		0	0	0			System Ple	enum Heat		0	0.00	cfm/ft ²	0.49		0.49
Underflr Sup Ht Pk	up		0	0			Underflr S	up Ht Pkup		0	0.00	cfm/ton	196.70		
Supply Air Leakag	e	0	0	0			Supply Air	Leakage		0	0.00	ft²/ton	400.45		
												Btu/hr-ft ²	29.97	-2	1.58
Grand Total ==>	22,154	0	36,169	100.00	17,554	100.00	Grand Tota	a/ ==>	0	-26,041	100.00	No. People	23		
] []	AREAS		ш		SELECTIO	N	
	Total Canacity	Sens Can	Coil Airflow	Enter	DB/WB/HR	Leave	DR/WR/HP		Gross Total	Glass	"	Canacity	Coil Airflow	Frt	1 va
	ton MBh	MRh	cfm	°F	°F ar/lb	°F	°F ar/lb		01033 10141	ft ² (%)		MBh	cfm	°F	°F
			5111		. 9		. 9./10						-		=0 -
Main Cig	3.0 36.2	23.3	593	84.0 6	8.1 80.0	47.8 4	/.3 48.7	Floor	1,207		Main Htg	-26.0	593	31.7	/2.0
Aux Cig	0.0 0.0	0.0	0	0.0	0.0 0.0	0.0	0.0 0.0	Part	0		Aux Htg	0.0	0	0.0	0.0
Opt Vent	0.0 0.0	0.0	0	0.0	0.0 0.0	0.0	0.0 0.0	Int Doo	r 0		Preheat	-10.4	593	31.7	47.8
Total	2.0 20.0							ExFir	0			0.0	~	0.0	0.0
rotar	3.0 30.2							Wall	0		Humidif Ont Vont	0.0	0	0.0	0.0
								wvan	0	0 0		0.0	U	0.0	0.0
								Ext Do	or 0	0 0	Iotai	-26.0			

Zone - 4

Project Name: Dataset Name: Library-42612.trc TRACE® 700 v6.2.6.5 calculated at 01:00 PM on 04/26/2012 Alternative - 1 System Checksums Report Page 4 of 51

	COOLING C			CLG SPACE	E PEAK			HEATING O	OIL PEAK	TEMPERATURES					
Peak	ed at Time:		1o/Hr: 7 / 14	0	Mo/Hr:	7/15			Mo/Hr:	Heating Design		CADR	Cooling	Hea	iting
	Sutside Air.	ORDBITT	5/110. 50/7570	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	OADD.	51			OADD.	0		Ra Plenum	80.0		80.0
	Space	Plenum	Net	Percent	Space	Percent			Space Peak	Coil Peak	Percent	Return	70.1		70.1
	Sens. + Lat.	Sens. + Lat	Total	Of Total	Sensible	Of Total			Space Sens	Tot Sens	Of Total	Ret/OA	80.5		39.1
	Btu/h	Btu/h	Btu/h	(%)	Btu/h	(%)			Btu/h	Btu/h	(%)	Fn MtrTD	0.0		0.0
Envelope Loads							Envelope L	oads				Fn BldTD	0.0		0.0
Skylite Solar	0	0	0	0	0	0	Skylite S	olar	0	0	0.00	Fn Frict	0.0		0.0
Skylite Cond	0	0	0	0	0	0	Skylite C	ond	0	0	0.00				
Root Cond	0	0	0	0	. 0	0	Root Cor	nd	0	0	0.00				
Glass Solar	0	0	0	0	0	0	Glass So	nar Cond	0	0	0.00	A	IRFLOW5		
Wall Cond	0	0	0	0	0	0	Wall Con		0	0	0.00		Cooling	He	ating
Partition/Door	0	0	0	0	0	0	Partition/	Door	0	0	0.00	Diffuser	3,360		3,360
Floor	0		ů 0	ő	Ő	ő	Floor	200.	ő	0	0.00	Terminal	3,360		3,360
Adjacent Floor	Ō	0	ō	ō	Ō	0	Adiacent	Floor	0	0	0.00	Main Fan	3,360		3,360
Infiltration	Ō		ō	ō	Ō	0	Infiltration	n	0	0	0.00	Sec Fan	0		0
Sub Total ==>	0	0	0	0	0	0	Sub Tota	a/ ==>	0	0	0.00	Nom Vent	1.720		1.720
				-		-						AHU Vent	1,720		1.720
Internal Loads							Internal Loa	ads				Infil	0		0
Lights	83 284	0	83 284	42	83 284	81	Linhts		0	0	0.00	MinStop/Rh	0		0
People	5.000	ŏ	5.000	3	2.500	2	People		ŏ	ő	0.00	Return	2.860		2,860
Misc	16,967	0	16,967	9	16,967	17	Misc		0	0	0.00	Exhaust	1,220		1,220
Sub Total ==>	105 251	0	105.251	53	102,751	100	Sub Tota	a/ ==>	0	0	0.00	Rm Exh	500		500
		-							-	-		Auxiliary	0		0
Ceiling Load	0	0	0	0	0	0	Ceiling Loa	d	0	0	0.00	Leakage Dwn	0		0
Ventilation Load	0	0	92,857	47	0	0	Ventilation	Load	0	-133,954	120.09	Leakage Ups	0		0
Adj Air Trans Heat	0		0	0	0	0	Adj Air Tra	ns Heat	0	0	0				
Dehumid. Ov Sizin	g		0	0			Ov/Undr Si	zing	0	0	0.00				
Ov/Undr Sizing	0		0	0	. 0	0	Exhaust He	eat		-9,413	8.44	ENGI	NEERING C	KS	
Exhaust Heat		0	0	0			OA Preheat	t Diff.		0	0.00		Casling	Har	
Sup. Fan Heat			0	0			RA Preheat	Diff.		0	0.00	% 04	51.2	пеа	51.2
Ret. Fan Heat		0	0	0			Additional	Reheat		31 824	-28.53	/6 OA	0.16		0.16
Underfir Sup Ht Bk		0	0	0			Undorfir St	in Ht Bkup		01,024	0.00	ofm/ton	203.53		0.10
Supply Air Leakag	o -	0	0	0			Supply Air	Loakago		0	0.00	ft²/ton	1 237 81		
Oupply An Leakag	6		0					Leakage		0	0.00	Rtu/br-ft ²	9.69		6 56
Grand Total ==>	105,251	0	198,108	100.00	102,751	100.00	Grand Tota	/ ==>	0	-111,543	100.00	No. People	10		
L		COOL IN		CTION							u			N	
	Total Canacity	Sons Can	Coil Airflow	Entor		Loova			Gross Total	Glass		Canacity	Coil Airflow	Ent	1.00
	ton MBh	MBh	cfm	°F	°F ar/lb	°F	°F ar/lb		GIUSS IUtai	ft ² (%)		MBh	cfm	°F	°F
Main Clor 1	6.5 198.1	138.2	3.360	79.5 6	3.8 65.8	41.7 4	1.6 39.6	Floor	20.435	(,,,	Main Htg	-134.0	3.360	33.2	69.8
Aux Clg	0.0 0.0	0.0	0	0.0	0.0 0.0	0.0	0.0 0.0	Part	0		Aux Htg	0.0	0	0.0	0.0
Opt Vent	0.0 0.0	0.0	0	0.0	0.0 0.0	0.0	0.0 0.0	Int Doo	r 0		Preheat	-27.4	3,360	34.2	41.7
Total 1	65 108 1							Boof	0	0 0	Lumidif	0.0	0	0.0	0.0
10000	0.0 190.1							Wall	0	õ õ l	Opt Vent	0.0	0	0.0	0.0
								Ext Do	0	0 0	Total	-134.0	0	0.0	0.0
l										0 0	iotai	-134.0			

Zone - 5

Project Name: Dataset Name: Library-42612.trc TRACE® 700 v6.2.6.5 calculated at 01:00 PM on 04/26/2012 Alternative - 1 System Checksums Report Page 5 of 51

Appendix B

Duct Layouts

Supply level is 40' above floor; return level is 10' above floor.

All duct sizes are $8"\ge 12"$ on the ground floor.

Appendix C

Equipment Schedules

McQuay Efinity	Vertical Water		McQuay Efinity	Vertical Water		McQuay Efinity Vertical Wate							
Source H	eat Pump		Source He	eat Pump		Source Heat Pump							
Quantity	7		Quantity	1		Quantity	1						
Model	Model I VW-290		Model	LVW-072		Model	LVW-215						
Capacity			Capacity			Capacity							
[BTU/h]	290000		[BTU/h]	72000		[BTU/h]	215000						
Taco Single	Stage Double												
Suction Horizo	ntal Split Case												
Pu	mp		Carrier Packaged Energy-Recovery Ventilator										
Quantity	1		Quantity	1									
Model	TA 1229		Model	62EHG									
RPM	1760		Pressure drop	.93 in									
			Nominal										
Power [BHP]	25		capacity	5500 cfm									
Head (feet)	75-125			Sensible	Latent	Total							
			100% Airflow										
			Heating										
Flow (GPM)	700-1050		Condition:	68%	60%	65%							
			75% Airflow										
Max operation	200 mai		Heating	700/	670/	740/							
pressure	300 psi		Condition:	13%	07%	/ 1%							
			Cooling										
			Condition:	68%	60%	63%							
			75% Airflow	0070	0070	0070							
			Coolina										
			Condition:	73%	67%	70%							